Add like
Add dislike
Add to saved papers

Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy.

BACKGROUND: Malignant glioma is the most common and deadliest brain cancer due to the obstacle from indistinct tumor margins for surgical excision and blood brain barrier (BBB) for chemotherapy. Here, we designed and prepared multifunctional polyethylenimine-entrapped gold nanoparticles (Au PENPs) for targeted SPECT/CT imaging and radionuclide therapy of glioma.

RESULTS: Polyethylenimine was selected as a template for sequential modification with polyethylene glycol (PEG), glioma-specific peptide (chlorotoxin, CTX) and 3-(4-hydroxyphenyl)propionic acid-OSu (HPAO), and were then used to entrap gold nanoparticles (Au NPs). After 131 I radiolabeling via HPAO, the 131 I-labeded CTX-functionalized Au PENPs as a multifunctional glioma-targeting nanoprobe were generated. Before 131 I radiolabeling, the CTX-functionalized Au PENPs exhibited a uniform size distribution, favorable X-ray attenuation property, desired water solubility, and cytocompatibility in the given Au concentration range. The 131 I-labeled CTX-functionalized Au PENPs showed high radiochemical purity and stability, and could be used as a nanoprobe for the targeted SPECT/CT imaging and radionuclide therapy of glioma cells in vitro and in vivo in a subcutaneous tumor model. Owing to the unique biological properties of CTX, the developed nanoprobe was able to cross the BBB and specifically target glioma cells in a rat intracranial glioma model.

CONCLUSIONS: Our results indicated that the formed nanosystem had the significant potential to be applied for glioma targeted diagnosis and therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app