Add like
Add dislike
Add to saved papers

Cytotoxic Activity of the Histone Deacetylase 3-Selective Inhibitor Pojamide on MDA-MB-231 Triple-Negative Breast Cancer Cells.

We examined the effects of the ferrocene-based histone deacetylase-3 inhibitor Pojamide ( N ¹-(2-aminophenyl)- N ⁸-ferrocenyloctanediamide) and its two derivatives N ¹-(2-aminophenyl)- N ⁶-ferrocenyladipamide and N ¹-(2-aminophenyl)- N ⁸-ferroceniumoctanediamide tetrafluoroborate on triple-negative MDA-MB-231 breast cancer cells. Viability/growth assays indicated that only the first two compounds at 70 μM concentration caused an approximate halving of cell number after 24 h of exposure, whereas the tetrafluoroborate derivative exerted no effect on cell survival nor proliferation. Flow cytometric and protein blot analyses were performed on cells exposed to both Pojamide and the ferrocenyladipamide derivative to evaluate cell cycle distribution, apoptosis/autophagy modulation, and mitochondrial metabolic state in order to assess the cellular basis of the cytotoxic effect. The data obtained show that the cytotoxic effect of the two deacetylase inhibitors may be ascribed to the onset of non-apoptotic cell death conceivably linked to a down-regulation of autophagic processes and an impairment of mitochondrial function with an increase in intracellular reactive oxygen species. Our work expands the list of autophagy-regulating drugs and also provides a further example of the role played by the inhibition of autophagy in breast cancer cell death. Moreover, the compounds studied may represent attractive and promising targets for subsequent molecular modeling for anti-neoplastic agents in malignant breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app