Add like
Add dislike
Add to saved papers

Phosphorus Concentration in Knee Joint Structures of Patients Following Replacement Surgery.

The aim of the study was to assess phosphorus (P) concentration in structures of the knee joint-including the tibial spongy bone, articular cartilage, meniscus, anterior cruciate ligament, and infrapatellar fat pad (Hoffa's fat pad)-of patients following knee joint replacement. The study also aimed to assess the influence of selected biological and environmental factors on P concentration in studied parts of the knee joint. Phosphorus concentration was determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Statistically significant differences in P concentration were found between different elements of the knee joint. The highest P concentration was measured in the spongy bone (72,746.68 mg kg-1 dw) and the lowest in the Hoffa's fat pad (1203.19 mg kg-1 dw). P levels were unaffected by gender, age, BMI, place of residence, smoking, or alcohol consumption. Data on P concentration in the osteoarticular elements of the knee may be useful in the interpretation and evaluation of biochemical, morphological, and mechanical changes occurring in the body.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app