Add like
Add dislike
Add to saved papers

Research on the Physico-Mechanical Properties of Moso Bamboo with Thermal Treatment in Tung Oil and Its Influencing Factors.

Materials 2019 Februrary 18
In this study, the effects of tung oil heat treatment on the physico-mechanical properties of moso bamboo were investigated. Here, heat treatment in tung oil at 100⁻200 °C was used to modify natural bamboo materials. The changes in the nanostructures of cell walls in bamboo caused by oil heat treatment, like density, chemical compositions, and cellulose crystalline, were evaluated to study their correlation with mechanical properties. Results showed that the mechanical performance of bamboo, such as ultimate stress, modulus of elasticity (MOE), and modulus of rupture (MOR), didn't reduce after heat treatment below 200 °C, compared with the untreated bamboo, which was mainly due to the tung oil uptake, stable cellulose content, and the increment of cellulose crystalline. No remarkable change in the ultimate strain occurred for bamboo materials thermally treated below 140 °C, but it decreased obviously at the heating temperature over 180 °C, mainly due to the degradation of hemicellulose resulting in a decrease in the viscoelasticity of cell wall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app