Add like
Add dislike
Add to saved papers

In Situ Synthesis of a Stable Fe₃O₄@Cellulose Nanocomposite for Efficient Catalytic Degradation of Methylene Blue.

Nanomaterials 2019 Februrary 17
To rapidly obtain a stable Fe₃O₄@cellulose heterogeneous Fenton catalyst, a novel in situ chemical co-precipitation method was developed. Compared with mechanical activation (MA)-pretreated cellulose (MAC), MA + FeCl₃ (MAFC)-pretreated cellulose (MAFCC) was more easily dissolved and uniformly distributed in NaOH/urea solvent. MAFCC and MAC solutions were used as precipitators to prepare Fe₃O₄@MAFCC and Fe₃O₄@MAC nanocomposites, respectively. MAFCC showed stronger interaction and more uniform combination with Fe₃O₄ nanoparticles than MAC, implying that MAFC pretreatment enhanced the accessibility, reactivity, and dissolving capacity of cellulose thus, provided reactive sites for the in situ growth of Fe₃O₄ nanoparticles on the regenerated cellulose. Additionally, the catalytic performance of Fe₃O₄@MAFCC nanocomposite was evaluated by using for catalytic degradation of methylene blue (MB), and Fe₃O₄@MAC nanocomposite and Fe₃O₄ nanoparticles were used for comparative studies. Fe₃O₄@MAFCC nanocomposite exhibited superior catalytic activity for the degradation and mineralization of MB in practical applications. After ten cycles, the structure of Fe₃O₄@MAFCC nanocomposite was not significantly changed owing to the strong interaction between MAFCC and Fe₃O₄ nanoparticles. This study provides a green pathway to the fabrication of a stable nanocomposite catalyst with high catalytic performance and reusability for the degradation of organic pollutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app