Add like
Add dislike
Add to saved papers

Reaction fronts in persistent random walks with demographic stochasticity.

Physical Review. E 2019 January
Standard reaction-diffusion systems are characterized by infinite velocities and no persistence in the movement of individuals, two conditions that are violated when considering living organisms. Here we consider a discrete particle model in which individuals move following a persistent random walk with finite speed and grow with logistic dynamics. We show that, when the number of individuals is very large, the individual-based model is well described by the continuous reactive Cattaneo equation (RCE), but for smaller values of the carrying capacity important finite-population effects arise. The effects of fluctuations on the propagation speed are investigated both considering the RCE with a cutoff in the reaction term and by means of numerical simulations of the individual-based model. Finally, a more general Lévy walk process for the transport of individuals is examined and an expression for the front speed of the resulting traveling wave is proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app