Add like
Add dislike
Add to saved papers

Diffusion-dynamics laws in stochastic reaction networks.

Physical Review. E 2019 January
Many biological activities are induced by cellular chemical reactions of diffusing reactants. The dynamics of such systems can be captured by stochastic reaction networks. A recent numerical study has shown that diffusion can significantly enhance the fluctuations in gene regulatory networks. However, the universal relation between diffusion and stochastic system dynamics remains veiled. Within the approximation of reaction-diffusion master equation (RDME), we find general relation that the steady-state distribution in complex balanced networks is diffusion-independent. Here, complex balance is the nonequilibrium generalization of detailed balance. We also find that for a diffusion-included network with a Poisson-like steady-state distribution, the diffusion can be ignored at steady state. We then derive a necessary and sufficient condition for networks holding such steady-state distributions. Moreover, we show that for linear reaction networks the RDME reduces to the chemical master equation, which implies that the stochastic dynamics of networks is unaffected by diffusion at any arbitrary time. Our findings shed light on the fundamental question of when diffusion can be neglected, or (if nonnegligible) its effects on the stochastic dynamics of the reaction network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app