Add like
Add dislike
Add to saved papers

Noise-induced rectification in out-of-equilibrium structures.

Physical Review. E 2019 January
We consider the motion of overdamped particles over random potentials subjected to a Gaussian white noise and a time-dependent periodic external forcing. The random potential is modeled as the potential resulting from the interaction of a point particle with a random polymer. The random polymer is made up, by means of some stochastic process, from a finite set of possible monomer types. The process is assumed to reach a nonequilibrium stationary state, which means that every realization of a random polymer can be considered as an out-of-equilibrium structure. We show that the net flux of particles over this random medium is nonvanishing when the potential profile on every monomer is symmetric. We prove that this ratchetlike phenomenon is a consequence of the irreversibility of the stochastic process generating the polymer. On the contrary, when the process generating the polymer is at equilibrium (thus fulfilling the detailed balance condition) the system is unable to rectify the motion. We calculate the net flux of the particles in the adiabatic limit for a simple model and we test our theoretical predictions by means of Langevin dynamics simulations. We also show that, out of the adiabatic limit, the system also exhibits current reversals as well as nonmonotonic dependence of the diffusion coefficient as a function of forcing amplitude.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app