Add like
Add dislike
Add to saved papers

Analytic form of the size distribution in irreversible growth of nanoparticles.

Physical Review. E 2019 January
We study theoretically the size distributions of nanoparticles (surface islands, droplets, molecular chains, and semiconductor nanowires) which grow without decay and with arbitrary size and time-dependent growth rates. Using a special transformation of variables, the analytic Green's function is obtained in the form of a Gaussian the variance of which is determined by the size dependence of the growth rate k(s). In the case of the power-law growth rates k(s)=(a+s)^{α}, the explicit formulas for the expectation and variance are given that contain earlier results in the limiting regimes. In the case of heterogeneous nucleation in a closed system, by convoluting Green's function with the exponential nucleation rate, we find an analytic size distribution which takes into account a delay in forming the smallest dimer and shows how it affects the distribution shapes. The recently discovered sub-Poissonian narrowing of the size distribution by nucleation antibunching is also included in the treatment. We briefly consider the length distribution of vapor-liquid-solid nanowires in the context of the obtained results. Overall, simple analytic size distributions obtained here under rather general assumptions may be useful for understanding and modeling statistical properties of different growth systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app