Add like
Add dislike
Add to saved papers

Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments.

Nanotechnology 2019 Februrary 20
For assisting the in-depth investigations of widespread electromechanical phenomena in functional materials, piezoresponse force microscopy (PFM) has gradually evolved to realize full information-flow acquisition and fit the conductive liquid working environments. Here, we designed data cube (DCUBE) based PFM to collect the electromechanical effect into a high-dimensional array of piezoresponse by adding \emph{ac} bias with a wide range of frequencies to the probe. The electromechanical and mechanical spectra can be consecutively extracted at each pixel in the intermittent-contact mode. High-resolution ferroelectric domains of the poled LiNbO$_3$ were mapped, corresponding to the ideal phase contrasts of about 180$^\circ$ in air, decane, and deionized water. Rich information detection and noncontact mode in DCUBE-PFM bring many merits on the electromechanical characterizations, especially for elastic-inhomogeneous surfaces and soft materials. Moreover, we systematically reveal the Debye screening effect and time-resolved field-oriented ion dynamics, which play crucial roles in the reduction of PFM spatial resolution in electrolytes. These physical discussions provide strategies to further realize high-resolution electromechanical imaging in highly conductive liquid environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app