JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Dynein promotes sustained axonal growth and Schwann cell remodeling early during peripheral nerve regeneration.

PLoS Genetics 2019 Februrary
Following injury, axons of the peripheral nervous system have retained the capacity for regeneration. While it is well established that injury signals require molecular motors for their transport from the injury site to the nucleus, whether kinesin and dynein motors play additional roles in peripheral nerve regeneration is not well understood. Here we use genetic mutants of motor proteins in a zebrafish peripheral nerve regeneration model to visualize and define in vivo roles for kinesin and dynein. We find that both kinesin-1 and dynein are required for zebrafish peripheral nerve regeneration. While loss of kinesin-1 reduced the overall robustness of axonal regrowth, loss of dynein dramatically impaired axonal regeneration and also reduced injury-induced Schwann cell remodeling. Chimeras between wild type and dynein mutant embryos demonstrate that dynein function in neurons is sufficient to promote axonal regrowth. Finally, by simultaneously monitoring actin and microtubule dynamics in regenerating axons we find that dynein appears dispensable to initiate axonal regrowth, but is critical to stabilize microtubules, thereby sustaining axonal regeneration. These results reveal two previously unappreciated roles for dynein during peripheral nerve regeneration, initiating injury induced Schwann cell remodeling and stabilizing axonal microtubules to sustain axonal regrowth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app