Add like
Add dislike
Add to saved papers

Automated Triage Radiation Biodosimetry: Integrating Imaging Flow Cytometry with High-Throughput Robotics to Perform the Cytokinesis-Block Micronucleus Assay.

Radiation Research 2019 Februrary 20
The cytokinesis-block micronucleus (CBMN) assay has become a fully-validated and standardized method for radiation biodosimetry. The assay is typically performed using microscopy, which is labor intensive, time consuming and impractical after a large-scale radiological/nuclear event. Imaging flow cytometry (IFC), which combines the statistical power of traditional flow cytometry with the sensitivity and specificity of microscopy, has been recently used to perform the CBMN assay. Since this technology is capable of automated sample acquisition and multi-file analysis, we have integrated IFC into our Rapid Automated Biodosimetry Technology (RABiT-II). Assay development and optimization studies were designed to increase the yield of binucleated cells (BNCs), and improve data acquisition and analysis templates to increase the speed and accuracy of image analysis. Human peripheral blood samples were exposed ex vivo with up to 4 Gy of γ rays at a dose rate of 0.73 Gy/min. After irradiation, samples were transferred to microtubes (total volume of 1 ml including blood and media) and organized into a standard 8 × 12 plate format. Sample processing methods were modified by increasing the blood-to-media ratio, adding hypotonic solution prior to cell fixation and optimizing nuclear DRAQ5 staining, leading to an increase of 81% in BNC yield. Modification of the imaging processing algorithms within IFC software also improved BNC and MN identification, and reduced the average time of image analysis by 78%. Finally, 50 μl of irradiated whole blood was cultured with 200 μl of media in 96-well plates. All sample processing steps were performed automatically using the RABiT-II cell::explorer robotic system adopting the optimized IFC-CBMN assay protocol. The results presented here detail a novel, high-throughput RABiT-IFC CBMN assay that possesses the potential to increase capacity for triage biodosimetry during a large-scale radiological/nuclear event.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app