JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Depletion of High-Molecular-Mass Proteins for the Identification of Small Proteins and Short Open Reading Frame Encoded Peptides in Cellular Proteomes.

The identification of small proteins and peptides (below ca. 100-150 amino acids) in complex biological samples is hampered by the dominance of higher-molecular-weight proteins. On the contrary, the increasing knowledge about alternative or short open reading frames creates a need for methods that allow the existence of the corresponding gene products to be proven in proteomics experiments. We present an acetonitrile-based precipitation methodology that depletes the majority of proteins above ca. 15 kDa. Parameters such as depletion mixture composition, pH, and temperature were optimized using a model protein mixture, and the method was evaluated in comparison with the established differential solubility method. The approach was applied to the analysis of the low-molecular-weight proteome of the archaea Methanosarcina mazei by means of LC-MS. The data clearly show a beneficial effect from a reduction of complexity, especially in terms of the quality of MS/MS-based identification of small proteins. This fast, detergent-free method allowed for, with minimal sample manipulation, the successful identification of several not yet identified short open reading frame encoded peptides in M. mazei.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app