JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitochondrial Toxicity of Selected Micropollutants, Their Mixtures, and Surface Water Samples Measured by the Oxygen Consumption Rate in Cells.

Some environmental pollutants impair mitochondria, which are of vital importance as energy factories in eukaryotic cells. Mitochondrial toxicity was quantified by measuring the change of the oxygen consumption rate (OCR) of HepG2 cells with the Agilent Seahorse XFe 96 Analyzer. Various mechanisms of mitochondrial toxicity, including inhibition of the electron transport chain or adenosine triphosphate (ATP) synthase as well as uncoupling of oxidative phosphorylation, were differentiated by dosing the sample in parallel with reference compounds following the OCR over time. These time-OCR traces were used to derive effect concentrations for 10% inhibition of the electron transport chain or 10% of uncoupling. The low effect level of 10% was necessary because environmental mixtures contain thousands of chemicals; only few of them interfere with mitochondria, but the others cause cytotoxicity. The OCR bioassay was validated with environmental pollutants of known mechanism of mitochondrial toxicity. Binary mixtures of uncouplers or inhibitors acted according to the mixture model of concentration addition. Uncoupling and/or inhibitory effects were detected in extracts of river water samples without apparent cytotoxicity. Uncoupling effects could only be quantified in water samples if inhibitory effects occurred at lower concentrations because no uncoupling can be detected without an appreciable membrane potential built up. The OCR bioassay can thus complement chemical analysis and in vitro bioassays for monitoring micropollutants in water. Environ Toxicol Chem 2019;00:1-12. © 2019 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app