Add like
Add dislike
Add to saved papers

Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores.

Electrophoresis 2019 Februrary 19
Nanopore sensor has been developed as a promising technology for DNA sequencing at the single-base resolution. However, the discrimination of homopolymers composed of guanines from other nucleotides has not been clearly revealed due to the easily formed G-quadruplex in aqueous buffers. In this work, we report that a tiny silicon nitride nanopore was used to sieve out G tetramers to make sure only homopolymers composed of guanines could translocate through the nanopore, then the 20-nucleotide long ssDNA homopolymers could be identified and differentiated. It is found that the size of the nucleotide plays a major role in affecting the current blockade as well as the dwell time while DNA is translocating through the nanopore. By the comparison of translocation behavior of ssDNA homopolymers composed of nucleotides with different volumes, it is found that smaller nucleotides can lead to higher translocation speed and lower current blockage, which is also found and validated for the 105-nucleotide long homopolymers. The studies performed in this work will improve our understanding of nanopore-based DNA sequencing at single-base level. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app