Add like
Add dislike
Add to saved papers

The OXPHOS supercomplex assembly factor HIG2A responds to changes in energetic metabolism and cell cycle.

HIG2A promotes cell survival under hypoxia and mediates the assembly of complex III and complex IV into respiratory chain supercomplexes. In the present study, we show that human HIGD2A and mouse Higd2a gene expressions are regulated by hypoxia, glucose, and the cell cycle-related transcription factor E2F1. The latter was found to bind the promoter region of HIGD2A. Differential expression of the HIGD2A gene was found in C57BL/6 mice in relation to tissue and age. Besides, the silencing of HIGD2A evidenced the modulation of mitochondrial dynamics proteins namely, OPA1 as a fusion protein increases, while FIS1, a fission protein, decreases. Besides, the mitochondrial membrane potential (ΔΨm) increased. The protein HIG2A is localized in the mitochondria and nucleus. Moreover, we observed that the HIG2A protein interacts with OPA1. Changes in oxygen concentration, glucose availability, and cell cycle regulate HIGD2A expression. Alterations in HIGD2A expression are associated with changes in mitochondrial physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app