Add like
Add dislike
Add to saved papers

Surface deformation tracking and modelling of soft materials.

Many computer vision algorithms have been presented to track surface deformations, but few have provided a direct comparison of measurements with other stereoscopic approaches and physics-based models. We have previously developed a phase-based cross-correlation algorithm to track dense distributions of displacements over three-dimensional surfaces. In the present work, we compare this algorithm with one that uses an independent tracking system, derived from an array of fluorescent microspheres. A smooth bicubic Hermite mesh was fitted to deformations obtained from the phase-based cross-correlation data. This mesh was then used to estimate the microsphere locations, which were compared to stereo reconstructions of the microsphere positions. The method was applied to a 35 mm × 35 mm × 35 mm soft silicone gel cube under indentation, with three square bands of microspheres placed around the indenter tip. At an indentation depth of 4.5 mm, the root-mean-square (RMS) differences between the reconstructed positions of the microspheres and their identified positions for the inner, middle, and outer bands were 60 µm, 20 µm, and 19 µm, respectively. The usefulness of the strain-tracking data for physics-based finite element modelling of large deformation mechanics was then demonstrated by estimating a neo-Hookean stiffness parameter for the gel. At the optimal constitutive parameter estimate, the RMS difference between the measured microsphere positions and their finite element model-predicted locations was 143 µm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app