Add like
Add dislike
Add to saved papers

Silver nanoparticles present high intracellular and extracellular killing against Staphylococcus aureus.

OBJECTIVES: Bone and joint infections caused by Staphylococcus aureus are becoming increasingly difficult to treat due to rising antibiotic resistance, resilient biofilms and intracellular survival of S. aureus. It has been challenging to identify and develop antimicrobial agents that can be used to kill extracellular and intracellular bacteria while having limited toxicity towards host cells. In addressing this challenge, this study investigates the antimicrobial efficacy and toxicity of silver nanoparticles (AgNPs).

METHODS: Intracellular bacteria were generated using a co-culture model of human osteoblast cells and S. aureus. Extracellular and intracellular S. aureus were treated with AgNPs, antibiotics and their combinations, and numbers of colonies were quantified. Toxicity of AgNPs against human osteoblast cells was determined by quantifying the number of viable cells after treatment.

RESULTS: AgNPs demonstrated excellent antimicrobial activity against extracellular S. aureus with a 100% killing efficacy at concentrations as low as 56 μM, along with a high intracellular killing efficacy of 76% at 371 μM. AgNPs were non-toxic or slightly toxic towards human osteoblasts at the concentrations studied (up to 927 μM). Moreover, smaller-sized (40 nm) AgNPs were more efficacious in killing bacteria compared with their larger-sized (100 nm) counterparts and synergistic antimicrobial effects against extracellular bacteria were observed when AgNPs were combined with gentamicin.

CONCLUSIONS: AgNPs and their combination with antibiotics have demonstrated high extracellular and intracellular bacterial killing and presented unique aspects for potential clinical applications, especially for chronic and recurrent infections where intracellular bacteria may be the cause.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app