Add like
Add dislike
Add to saved papers

Effect of PlzD, a YcgR homologue of c-di-GMP-binding protein, on polar flagellar motility in Vibrio alginolyticus.

YcgR, a cyclic diguanylate (c-di-GMP)-binding protein expressed in Escherichia coli, brakes flagellar rotation by binding to the motor in a c-di-GMP dependent manner and has been implicated in triggering biofilm formation. Vibrio alginolyticus has a single polar flagellum and encodes YcgR homologue, PlzD. When PlzD or PlzD-GFP was highly over-produced in nutrient-poor condition, the polar flagellar motility of V. alginolyticus was reduced. This inhibitory effect is c-di-GMP independent as mutants substituting putative c-di-GMP-binding residues retain the effect. Moderate over-expression of PlzD-GFP allowed its localization at the flagellated cell pole. Truncation of the N-terminal 12 or 35 residues of PlzD abolished the inhibitory effect and polar localization, and no inhibitory effect was observed by deleting plzD or expressing an endogenous level of PlzD-GFP. Subcellular fractionation showed that PlzD, but not its N-terminally truncated variants, was precipitated when over-produced. Moreover, immunoblotting and N-terminal sequencing revealed that endogenous PlzD is synthesized from Met33. These results suggest that an N-terminal extension allows PlzD to localize at the cell pole but causes aggregation and leads to inhibition of motility. In V. alginolyticus, PlzD has a potential property to associate with the polar flagellar motor but this interaction is too weak to inhibit rotation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app