Add like
Add dislike
Add to saved papers

Effect of cell culture models on the evaluation of anticancer activity and mechanism analysis of the potential bioactive compound, iturin A, produced by Bacillus subtilis.

Food & Function 2019 Februrary 20
Two-dimensional (2D) cell culture is widely used to evaluate the potential of food compounds in anticancer activity in vitro. However, 3D culture is rarely used. In this study, we compared the obtained anticancer activity and mechanisms of iturin A, a multiple functional compound produced by Bacillus subtilis, in 2D and 3D cultures of HepG2 cells. 3D culture resulted in a much higher 50% inhibitory concentration (55.26 μM) compared to 2D culture (11.91 μM). Reactive oxygen species accumulation, autophagy, apoptosis characterized by cytochrome c release, high apoptotic protein expression and caspase activation were detected in both 2D and 3D cultures. Induction of paraptosis was also detected in 2D culture and the cytoplasmic vacuoles occurred in large numbers. Compared with 2D culture, 3D culture can simulate the microenvironment in vivo and provide more accurate data. Therefore, 3D culture was recommended for the evaluation of anticancer activity of food compounds towards solid tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app