Add like
Add dislike
Add to saved papers

Friction between a polyethylene pin and a microtextured CoCrMo disc, and its correlation to polyethylene wear, as a function of sliding velocity and contact pressure, in the context of metal-on-polyethylene prosthetic hip implants.

The longevity of metal-on-polyethylene prosthetic hip implant bearings, in which a polished CoCrMo femoral head articulates with a polyethylene liner, is limited by mechanical instability or inflammation resulting from osteolysis caused by polyethylene wear debris. We use pin-on-disc experiments to measure friction and wear of a polyethylene pin that articulates with different microtextured CoCrMo surfaces, covering a wide range of operating conditions including sliding velocity and contact pressure. We determine how the lubrication regime changes as a function of operating conditions, and show that the microtexture accelerates the transition from boundary to elastohydrodynamic lubrication. Additionally, we illustrate that the microtexture could enable tailoring the hip implant to the specific patient needs based on activity level, gender, and age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app