Add like
Add dislike
Add to saved papers

Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals.

Nature Communications 2019 Februrary 19
Filterless narrowband photodetectors can realize color discrimination without filter or bulk spectrometer, thus greatly reducing the system volume and cost for many imaging applications. Charge collection narrowing has been demonstrated to be a successful approach to achieve filterless narrowband photodetections; nevertheless, it sacrifices the sensitivity of the photodetectors. Here we show a highly tunable narrowband photodetector based on two-dimensional perovskite single crystals with high external quantum efficiency (200%), ultralow dark current (10-12  A), and high on-off ratio (103 ). The spectral response of the narrowband photodetectors can be continuously tuned from red to blue with all full-width at half-maximum < 60 nm and especially < 20 nm in blue wavelength range. The excellent performance can be ascribed to self-trapped states within bandgap and extremely low electrical conductivity in the out-of-plane direction. Our findings open the exciting potential of 2D perovskites for next-generation optoelectronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app