Add like
Add dislike
Add to saved papers

MAIT Cells Upregulate α4β7 in Response to Acute Simian Immunodeficiency Virus/Simian HIV Infection but Are Resistant to Peripheral Depletion in Pigtail Macaques.

Journal of Immunology 2019 Februrary 19
Mucosal-associated invariant T (MAIT) cells are nonconventional T lymphocytes that recognize bacterial metabolites presented by MR1. Whereas gut bacterial translocation and the loss/dysfunction of peripheral MAIT cells in HIV infection is well described, MAIT cells in nonhuman primate models are poorly characterized. We generated a pigtail macaque (PTM)-specific MR1 tetramer and characterized MAIT cells in serial samples from naive and SIV- or simian HIV-infected PTM. Although PTM MAIT cells generally resemble the phenotype and transcriptional profile of human MAIT cells, they exhibited uniquely low expression of the gut-homing marker α4β7 and were not enriched at the gut mucosa. PTM MAIT cells responded to SIV/simian HIV infection by proliferating and upregulating α4β7, coinciding with increased MAIT cell frequency in the rectum. By 36 wk of infection, PTM MAIT cells were activated and exhibited a loss of Tbet expression but were not depleted as in HIV infection. Our data suggest the following: 1) MAIT cell activation and exhaustion is uncoupled from the hallmark depletion of MAIT cells during HIV infection; and 2) the lack of PTM MAIT cell enrichment at the gut mucosa may prevent depletion during chronic infection, providing a model to assess potential immunotherapeutic approaches to modify MAIT cell trafficking during HIV infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app