Add like
Add dislike
Add to saved papers

Proprioceptive Recognition with Artificial Neural Networks Based on Organizations of Spinocerebellar Tract and Cerebellum.

Muscle kinematics and kinetics are nonlinearly encoded by proprioceptors, and the changes in muscle length and velocity are integrated into Ia afferent. Besides, proprioceptive signals from multiple muscles are probably mixed in afferent pathways, which all lead to difficulties in proprioceptive recognition for the cerebellum. In this study, the artificial neural networks, whose organizations are biologically based on the spinocerebellar tract and cerebellum, are utilized to decode the proprioceptive signals. Consistent with the controversy of the proprioceptive division in the dorsal spinocerebellar tract, the spinocerebellar tract networks incorporated two distinct inferences, (1) the centralized networks, which mixed Ia, II, and Ib and processed them together; (2) the decentralized networks, which processed Ia, II, and Ib afferents separately. The cerebellar networks were based on the Marr-Albus model to recognize the kinematic states. The networks were trained by a specific movement, and the trained networks were subsequently required to predict kinematic states of six movements. The results demonstrated that the centralized networks, which were more consistent with the physiological findings in recent years, had better recognition accuracy than the decentralized networks, and the networks were still effective even when proprioceptive afferents from multiple muscles were integrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app