Add like
Add dislike
Add to saved papers

Functionalized Photosensitive Gelatin Nanoparticles for Drug Delivery Application.

In this study, zinc phthalocyanine (ZnPc) was loaded onto gelatin nanoparticles functionalized with polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride) by layer-by-layer (LbL) assembly. The process yield and the encapsulation efficiency were 76.0% ± 2.5 and 86.0% ± 1.8, respectively. The functionalized photosensitive gelatin nanoparticles (FPGN) had a mean diameter of 396.5 ± 45.8 nm, narrow distribution size with a polydispersity index of 0.106. The obvious switching of zeta potential indicates successful alternating deposition of the polyanion PSS and polycation PAH directly on the gelatin nanoparticles. The in vitro drug release investigation found that the LbL deposited polyelectrolyte bilayer is very efficient to reduce the release rate and assuage the initial burst for drugs loaded in gelatin nanoparticles. The photobiological activity of FPGN was evaluated on mouse macrophage carcinoma line J774 A-1. The cells viability decreased with the increase of the light dose in the range of 1-10.0 J.cm-2 . ZnPc-loaded in functionalized gelatin nanoparticles are the release systems that promise photodynamic therapy use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app