Add like
Add dislike
Add to saved papers

Ultra-long silver nanowires induced mitotic abnormalities and cytokinetic failure in A549 cells.

Nanotoxicology 2019 Februrary 20
Asbestos fiber has been associated with mesothelioma and lung cancer. However, the carcinogenic risks of other fiber nanomaterials with morphological similarities to asbestos have not been fully studied. Ultra-long silver nanowires (AgNWs) are increasingly used fiber-shaped nanomaterials with a high aspect ratio, but very few studies have investigated their health risks. Here, proliferation abnormalities of lung epithelial cells induced by ultra-long AgNWs were investigated. Ultra-long AgNW treatment induced dose- and diameter-dependent increase in the ratio of multinucleated cells. Further, proteins involved in mitosis and cytokinesis, including Aurora A, p-Histone 3 (ser10), RhoA, p-MLC, and myosin IIb, were significantly upregulated after an ultra-long AgNW treatment, leading to mitotic abnormalities and cytokinetic failure. Meanwhile, exposure to ultra-long AgNWs induced cell cycle arrest. Interestingly, a series of experiments demonstrated that ROS generation and Ag+ release were not responsible for the multinucleation induced by ultra-long AgNWs, but ultra-long AgNWs in the intercellular bridge might obstruct the contractile ring and inhibit abscission of the cytokinetic furrow by direct physical contact. Altogether, our findings indicate that ultra-long AgNWs can induce chromosomal instability, which has important consequences for the safety of ultra-long AgNWs to human health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app