Add like
Add dislike
Add to saved papers

3D ordered mesoporous TiO2@CMK-3 nanostructure for sodium-ion batteries with long-term and high-rate performance.

Nanotechnology 2019 Februrary 19
Abstract:Sodium ion battery is abundant in resources and costs low, making it very competitive in the large-scale energy storage devices. The anatase TiO2 electrode material with insertion/extraction mechanism shows stable cycling performance,which is more in line with the technical requirements of large-scale energy storage batteries. To improve the electrical conductivity and stability of the TiO2 electrode materials, we have synthesized anatase TiO2 and CMK-3 composite. TiO2 nanoparticles were deposited on the surface of CMK-3 by hydrothermal reaction, and the anode material of the sodium ion batteries with 3D network structure was prepared. With the CMK-3, the structure stability, conductivity and reaction kinetics of TiO2@CMK-3 composite is improved. The electrochemical behavior is dominated by pseudocapacitance, which gives the material excellent high-rate performance. It delivers a reversible specific capacity of 186.3 mA h g-1 after 100 cycles at the current density of 50 mA g-1, 124.5 mA h g-1 after 500 long-term cycles, meanwhile it shows an outstanding rate performance, a reversible specific capacity of 105.9 mA h g-1 at 1600 mA g-1, 177.3 mA h g-1 when the current density drops to 50 mA g-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app