Add like
Add dislike
Add to saved papers

Photosensitized diastereoisomer-specific degradation of hexabromocyclododecane (HBCD) in the presence of humic acid in aquatic systems.

Humic acids (HA) are the most important photosensitizers in the ocean and generate highly reactive oxygen species (ROS), known as photochemically produce reactive intermediates (PPRI), which degrade organic pollutants. Thus, to reveal the fate of organic pollutants in an aqueous environment, it is important to understand the natural photodegradation phenomenon caused by HA. Three ROS generated from HA, 1 O2 , O2 -, and OH, were measured using different probe compounds and instrumental techniques. In this study, HBCD (hexabromocyclododecane), a newly listed one of persistent organic pollutants (POPs) under the Stockholm Convention, was studied to understand the phototransformation mechanism, which has not been sufficiently investigated in terms of its environmental fate and transport, despite the distinctive features of its diastereoisomers. The results showed that the diastereoisomer-specific distributions of α-, β-, and γ-HBCD were related to the acceleration and retardation of photodegradation in the presence of AHA (Aldrich Humic Acid) under simulated solar light, and only α-HBCD was rapidly photodegraded as the amount of AHA increased relative to the absence of AHA. This study provides the first characterization of the behavior of photosensitized HBCD degradation in aquatic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app