Add like
Add dislike
Add to saved papers

In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer.

The development of atomic magnetometers has led to nuclear magnetic resonance (NMR) in zero and ultralow magnetic fields without using cryogenic sensors. However, in-situ detection, meaning that a sample locates in the detection space beside a vapor cell, has been conducted only with parahydrogen-induced polarization. Other hyperpolarization techniques remain unexplored yet. In this work, we demonstrate that Overhauser dynamic nuclear polarization allows in-situ NMR detection with an atomic magnetometer at less than 1 μT. The 1 H NMR signal of a nitroxide radical solution was observed at 13.83 Hz, which corresponds to 325 nT. Signal-to-noise ratio was 32 after sixteen averages. On the Larmor precession of 1 H spins, a decaying oscillation was superimposed. We attribute it to a transient 87 Rb spin precession in response to a non-adiabatic field variation. This work shows a new capability of zero- and ultralow-field NMR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app