Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biological properties of modified bioactive glass on dental pulp cells.

Dental caries is a bacteria-caused condition classified among the most common chronic diseases worldwide. Treatment of dental caries implies the use of materials having regenerative and anti-bacterial properties, and controlling inflammation is critical for successful endodontic regeneration.

OBJECTIVES: The aim of this study was to fabricate and characterize a novel composite incorporating sol-gel derived silver-doped bioactive glass (BG) in a chitosan (CS) hydrogel at a 1:1 wt ratio(Ag-BG/CS).

METHODS: The effect of Ag-BG/CS on dental pulp cells (DPCs) proliferation was analyzed by CCK-8 assay, whereas the adhesion of DPCs was evaluated by confocal microscopy. The physical morphology of Ag-BG/CS was analyzed by scanning electron microscope. The anti-inflammatory effect of Ag-BG/CS was investigated by quantitative polymerase chain reaction (qPCR). Moreover, the effect of Ag-BG/CS on odontogenic differentiation of DPCs was studied by immunochemical staining, tissue-nonspecific alkaline phosphatase staining, qPCR, and western blot analyses. The antibacterial activity against dental caries key pathogenic bacteria was also evaluated.

RESULTS: The results of this study showed that Ag-BG/CS did not affect the proliferation of DPCs, it down-regulated the inflammatory-associated markers (IL-1β, IL-6, IL-8, TNF-α) of DPCs treated with Escherichia coli lipopolysaccharide (LPS) by inhibiting NF-κB pathway, and enhanced the in vitro odontogenic differentiation potential of DPCs. Furthermore, Ag-BG/CS strongly inhibited Streptococcus mutans and Lactobacillus casei growth.

CONCLUSIONS: This novel biomaterial possessed antibacterial and anti-inflammatory activity, also enhanced the odontogenic differentiation potential of LPS-induced inflammatory-reacted dental pulp cells. The material introduced in this study may thus represent a suitable dental pulp-capping material for future clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app