Add like
Add dislike
Add to saved papers

Ameliorating gut microenvironment through staphylococcal nuclease-mediated intestinal NETs degradation for prevention of type 1 diabetes in NOD mice.

Life Sciences 2019 Februrary 16
AIMS: Recent studies have revealed that neutrophil extracellular traps (NETs) provide negative feedback in the progression to chronic inflammation and contribute to the pathogenesis of multiple autoimmune diseases including type 1 diabetes (T1D). In addition, accumulating evidences suggest that gut immunity play a key role in T1D pathogenesis. Our study aimed to evaluate whether staphylococcal nuclease (SNase) targeting intestinal NETs can ameliorate the intestinal inflammatory environment and protect against T1D development in non-obese diabetic(NOD) mice.

MAIN METHODS: Degradation of NETs with SNase in vitro was examined using SYTOX green assay. NOD/LtJ mice were oral administration of Lactococcus lactisl (L. lactis) pCYT: SNase and blood glucose levels were monitored weekly. Several biomarkers of NETs formation, gut leakage and inflammation were determined using a commercial ELISA kit. T Cell phenotypes in peripheral immune system were analyzed in flow cytometry and fecal samples were isolated to investigate intestinal microbiota.

KEY FINDINGS: The oral delivery of SNase by L. lactis can decrease the NETs levels and ameliorate inflammation both in the intestine and pancreatic islets and finally effectively regulate the blood glucose levels of NOD mice. Meanwhile, zonulin and lipopolysaccharide levels also reduced in SNase-fed NOD mice, suggesting SNase could improve gut barrier function via intestinal NETs degradation. Furthermore, the abundances of the intestinal microbiota and butyrate-producing gut bacteria were also increased with SNase treatment.

SIGNIFICANCE: SNase shows potential for intestinal NETs to prevent T1D based on the gut-pancreas axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app