Add like
Add dislike
Add to saved papers

Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration.

Periodontal disease is a bacterial infection-associated disease of the periodontal tissues characterized by the destruction of tooth-supporting structures, including alveolar bone. The ideal goal of periodontal therapy is the complete regeneration of alveolar bone in a healthy microenvironment free of infection. In this study, we found that berberine, a benzylisoquinoline plant alkaloid from Coptidis Rhizoma, strongly inhibited the growth of Porphyromonas gingivalis. Gingipain is the most important virulence factor of Porphyromonas gingivalis in the process of periodontal tissue destruction. Berberine also had an inhibitory effect on gingipain activity in a concentration dependent manner. Remarkably, berberine restored the downregulation of osteogenesis-related genes expression in bone mesenchymal stem cells (BMSCs) induced by Porphyromonas gingivalis infection, and significantly increased the expression of osteogenesis-related genes such as OSX, COLI, ALP, OCN and OPN compared to the control group. This results suggested that berberine may directly promote osteogenesis. Further in-vitro studies demonstrated that berberine statistically significantly promoted the osteogenic differentiation of BMSCs at concentrations of 1 to 10 μM. In the research on the mechanisms, we found that both total β-catenin and nuclear β-catenin accumulation were statistically significantly increased by berberine. And the transcriptional activity of β-catenin/TCF was about 2 folds higher than the control group. Furthermore, Wnt signaling specific inhibitor DKK-1 blocked the above effects of berberine. These demonstrated that Wnt/β-catenin signalling pathway was involved in the osteogenic differentiation induced by berberine. The antibacterial actions in combination with the promotion role in osteogenic differentiation position berberine as a prospective drug for periodontal tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app