Add like
Add dislike
Add to saved papers

A Pickering Emulsion-Derived Liquid-Solid Hybrid Catalyst for Bridging Homogeneous and Heterogeneous Catalysis.

We describe a novel method to prepare a liquid-solid hybrid catalyst via interfacial growth of a porous silica crust around Pickering emulsion droplets, which allowed us to overcome the current limitations of both homogeneous and heterogeneous catalysts. The inner micron-scaled liquid (for example, ionic liquids) pool of the resultant catalyst can host free homogeneous molecular catalysts or enzymes to create a true homogeneous catalysis environment. The porous silica crust of the hybrid catalyst has excellent stability, which makes it amenable to packing directly in fixed-bed reactors for continuous flow catalysis. As a proof of concept, the enzymatic kinetic resolution of racemic alcohols, CrIII(salen) complex-catalyzed asymmetric ring opening of epoxides and Pd-catalyzed Tsuji-Trost allylic substitution reactions were used to verify the generality and versatility of our strategy for bridging homogeneous and heterogeneous catalysis. The hybrid catalyst-based continuous flow system exhibited a 1.6~16-fold enhancement in activity relative to homogeneous counterparts even at more than 1500 h, and the afforded enantioselectivities were completely equal to those obtained in the homogeneous counterpart systems. Interestingly, the catalytic efficiency can be tuned through rational engineering of the porous crust and the dimensions of the liquid pool, resulting in features of an innovatively designed catalyst. This contribution provides a new method to design efficient catalysts that can bridge the conceptual and technical gaps between homogeneous and heterogeneous catalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app