Add like
Add dislike
Add to saved papers

Cytochrome c oxidase structures suggest a four-state stochastic pump mechanism.

Cytochrome c oxidase catalyses the terminal step of cellular respiration in eukaryotes and in many prokaryotes. This enzyme reduces molecular oxygen by means of a process coupled with proton pumping. Models for proton pumping activity in cytochrome c oxidase can be divided into two groups, which are still strongly debated to date: one in which haem a is the key player, and another where this role is covered by the oxygen reduction site. Current models share the fact of requesting, more or less explicitly, an ordered sequence of events. Here, we show that all the available subunit I structures of this enzyme can be clustered in four groups. Starting from these structural observations, and considering the large corpus of available experimental data and theoretical considerations, a simple four-state (stochastic) pump model is proposed. This model implies a series of characteristics that reflect the behavior of the real enzyme in a natural way, where strictly sequential models require ad hoc assumptions (e.g. slipping mechanisms). Our results suggest that the stochastic conformational coupling could be a mechanism for energy transduction used by the protein machines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app