Add like
Add dislike
Add to saved papers

Multimaterial Microfluidic 3D Printing of Textured Composites with Liquid Inclusions.

3D printing with a high degree of spatial and compositional precision could open new avenues to the design and fabrication of functional composites. By combining the direct ink writing and microfluidics, a multimaterial 3D printing system for fabricating textured composites with liquid inclusions of programmable spatial distribution and compositions is reported here. Phase diagrams for the rational selection of desired printing parameters are determined through a combination of simple theoretical analysis and experimental studies. 1D, 2D, and 3D structures programmed with desired inclusion patterns and compositions are fabricated. Moreover, the versatility of this 3D printing framework in fabricating layered composite beams of tunable thermal property and self-healing materials is demonstrated. The proposed multimaterial microfluidic 3D printing framework could be broadly applicable for structural composites and soft robotic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app