Add like
Add dislike
Add to saved papers

Selective Production of Biobased Phenol from Lignocellulose-Derived Alkylmethoxyphenols.

ACS Catalysis 2018 December 8
Lignocellulosic biomass is the only renewable source of carbon for the chemical industry. Alkylmethoxyphenols can be obtained in good yield from woody biomass by reductive fractionation, but these compounds are of limited value for large-scale applications. We present a method to convert lignocellulose-derived alkylmethoxyphenols to phenol that can be easily integrated in the petrochemical industry. The underlying chemistry combines demethoxylation catalyzed by a titania-supported gold nanoparticle catalyst and transalkylation of alkyl groups to a low-value benzene-rich stream promoted by HZSM-5 zeolite. In this way, phenol can be obtained in good yield, and benzene can be upgraded to more valuable propylbenzene, cumene, and toluene. We demonstrate that intimate contact between the two catalyst functions is crucial to transferring the methyl groups from the methoxy functionality to benzene instead of phenol. In a mixed-bed configuration, we achieved a yield of 60% phenol and 15% cresol from 4-propylguaiacol in a continuous one-step reaction at 350 °C at a weight hourly space velocity of ∼40 h-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app