Add like
Add dislike
Add to saved papers

Fibroblast-myofibroblast crosstalk after exposure to mesenchymal stem cells secretome.

Aim: The aim of the present study was to investigate the effect of human bone marrow-derived mesenchymal stem cells conditioned medium on fibroblast to myofibroblast differentiation.

Background: Mesenchymal stem cells have a long-term clinical application and widely have used in autoimmune disease and regenerative medicine. However, some MSCs derived cytokines such as TGF-β could have a dual role in suppression or progression of disease. Fibroblast activation and extracellular matrix production are two key features of wound healing which mostly are controlled with multifunctional cytokine TGF-β1.

Methods: Bone marrow MSCs were isolated, cultured and used for conditioned medium preparation. The flow cytometry analysis was done for MSCs cell surface markers. MRC-5 subconfluent cells were starved with the medium containing 0.5 % FBS for 24h, then treated with exogenous TGF-β1 (10ng/ml as positive control) and MSCs-conditioned medium for 48h. Finally, the mRNA expression of three target genes: collagen I, collagen III and α-SMA were evaluated by RT-PCR technique.

Results: Our findings demonstrated that bone marrow-derived mesenchymal stem cells-conditioned medium (secretome) significantly upregulated type I and III collagen expression but non-significantly α-SMA gene expression.

Conclusion: Totally, Real Time PCR results suggest that MSCs conditioned medium activates differentiation of fibroblast to myofibroblast phenotype as confirmed through the presence of α-SMA, collagen I and collagen III expression compared to control in MRC 5 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app