Add like
Add dislike
Add to saved papers

Construction of Complex Features for Computational Predicting ncRNA-Protein Interaction.

Non-coding RNA (ncRNA) plays important roles in many critical regulation processes. Many ncRNAs perform their regulatory functions by the form of RNA-protein complexes. Therefore, identifying the interaction between ncRNA and protein is fundamental to understand functions of ncRNA. Under pressures from expensive cost of experimental techniques, developing an accuracy computational predictive model has become an indispensable way to identify ncRNA-protein interaction. A powerful predicting model of ncRNA-protein interaction needs a good feature set of characterizing the interaction. In this paper, a novel method is put forward to generate complex features for characterizing ncRNA-protein interaction (named CFRP). To obtain a comprehensive description of ncRNA-protein interaction, complex features are generated by non-linear transformations from the traditional k-mer features of ncRNA and protein sequences. To further reduce the dimensions of complex features, a group of discriminative features are selected by random forest. To validate the performances of the proposed method, a series of experiments are carried on several widely-used public datasets. Compared with the traditional k-mer features, the CFRP complex features can boost the performances of ncRNA-protein interaction prediction model. Meanwhile, the CFRP-based prediction model is compared with several state-of-the-art methods, and the results show that the proposed method achieves better performances than the others in term of the evaluation metrics. In conclusion, the complex features generated by CFRP are beneficial for building a powerful predicting model of ncRNA-protein interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app