Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Real Time Detection of In Vitro Tumor Cell Apoptosis Induced by CD8+ T Cells to Study Immune Suppressive Functions of Tumor-infiltrating Myeloid Cells.

Potentiation of the tumor-killing ability of CD8+ T cells in tumors, along with their efficient tumor infiltration, is a key element of successful immunotherapies. Several studies have indicated that tumor infiltrating myeloid cells (e.g., myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs)) suppress cytotoxicity of CD8+ T cells in the tumor microenvironment, and that targeting these regulatory myeloid cells can improve immunotherapies. Here, we present an in vitro assay system to evaluate immune suppressive effects of monocytic-MDSCs and TAMs on the tumor-killing ability of CD8+ T cells. To this end, we first cultured naïve splenic CD8+ T cells with anti-CD3/CD28 activating antibodies in the presence or absence of suppressor cells, and then co-cultured the pre-activated T cells with target cancer cells in the presence of a fluorogenic caspase-3 substrate. Fluorescence from the substrate in cancer cells was detected by real-time fluorescence microscopy as an indicator of T-cell induced tumor cell apoptosis. In this assay, we can successfully detect the increase of tumor cell apoptosis by CD8+ T cells and its suppression by pre-culture with TAMs or MDSCs. This functional assay is useful for investigating CD8+ T cell suppression mechanisms by regulatory myeloid cells and identifying druggable targets to overcome it via high throughput screening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app