Add like
Add dislike
Add to saved papers

Phonocardiogram classification using deep neural networks and weighted probability comparisons.

Cardiac auscultation is one of the most conventional approaches for the initial assessment of heart disease, however the technique is highly user-dependent and with low repeatability. Several computational approaches based on the analysis of the phonocardiograms (PCG) have been proposed to classify heart sounds into normal or abnormal, but most often do not achieve acceptable levels of sensitivity (Se) and specificity (Sp) or require the use of special hardware. We propose a novel approach for classification of PCG. First, the system makes use of deep neural networks for computing individual cardiac cycle probabilities, followed by classification using weighted probability comparisons. The system was tested on an extended dataset consisting of a balanced sample of 18179 normal and abnormal cycles, achieving Se and Sp values of 91.3% and 93.8% respectively. In addition, the system overcomes previous limitations since it was trained with a balanced sample; also, the decision factor used during the classification stage allows to control the trade-off between Se and Sp, making the proposed system suitable for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app