Add like
Add dislike
Add to saved papers

Evidence for associative plasticity in the human visual cortex.

Brain Stimulation 2019 Februrary 2
BACKGROUND: Repetitive convergent inputs to a single post-synaptic neuron can induce long-term potentiation (LTP) or depression (LTD) of synaptic activity in a spike timing-dependent manner.

OBJECTIVE: Here we set a protocol of visual paired associative stimulation (vPAS) of the primary visual cortex (V1) in humans to induce persistent changes in the excitatory properties of V1 with a spike timing rule.

METHODS: We provided convergent inputs to V1 by coupling transcranial magnetic stimulation (TMS) pulses of the occipital cortex with peripheral visual inputs, at four interstimulus intervals of -50/-25/+25/+50 ms relative to the visual evoked potential (VEP) P1 latency. We analysed VEP amplitude and delayed habituation before and up to 10 min after each vPAS protocol.

RESULTS: VEP amplitude was reduced after vPAS+25. Delayed VEP habituation was increased after vPAS-25 while it was reduced after vPAS+25.

CONCLUSIONS: We provide evidence that associative bidirectional synaptic plasticity is a feature not only of the sensorimotor but also of the human visual system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app