Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

Discovery of AAA+ Protease Substrates through Trapping Approaches.

Proteases play essential roles in cellular proteostasis. Mechanisms through which proteases recognize their substrates are often hard to predict and therefore require experimentation. In vivo trapping allows systematic identification of potential substrates of proteases, their adaptors, and chaperones. This combines in vivo genetic modifications of proteolytic systems, stabilized protease-substrate interactions, affinity enrichments of trapped substrates, and mass spectrometry (MS)-based identification. In vitro approaches, in which immobilized protease components are incubated with isolated cellular proteome, complement this in vivo approach. Both approaches can provide information about substrate recognition signals, degrons, and conditional effects. This review summarizes published trapping studies and their biological outcomes, and provides recommendations for substrate trapping of the processive AAA+ Clp, Lon, and FtsH chaperone proteolytic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app