Add like
Add dislike
Add to saved papers

Determining the interaction behavior of calf thymus DNA with berberine hydrochloride in the presence of linker histone: a biophysical study.

The binding of small molecules with histone-DNA complexes can cause an interference in vital cellular processes such as cell division and the growth of cancerous cells that results in apoptosis. It is significant to study the interaction of small molecules with histone-DNA complex for the purpose of better understanding their mechanism of action, as well as designing novel and more effective drug compounds. The fluorescence quenching of ct-DNA upon interaction with Berberine has determined the binding of Berberine to ct-DNA with Ksv  = 9.46 × 107 M-1 . Ksv value of ct-DNA-Berberine in the presence of H1 has been observed to be 3.10 × 107 M-1 , indicating that the H1 has caused a reduction in the binding affinity of Berberine to ct-DNA. In the competitive emission spectrum, ethidium bromide (EB) and acridine orange (AO) have been examined as intercalators through the addition of Berberine to ct-DNA complexes, which includes ctDNA-EB and ctDNA-AO. Although in the presence of histone H1 , we have observed signs of competition through the induced changes within the emission spectra, yet there has been apparently no competition between the ligands and probes. The viscosity results have confirmed the different behaviors of interaction between ctDNA and Berberine throughout the binary and ternary systems. We have figured out the IC50 and viability percent values at three different time durations of interaction between Berberine and MCF7 cell line. The molecular experiments have been completed by achieving the results of MTT assay, which have been confirmed to be in good agreement with molecular modeling studies. Communicated by Ramaswamy H. Sarma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app