Add like
Add dislike
Add to saved papers

Evaluation of the influence of temperature and relative humidity on the permeability of four films to the fumigant dimethyl disulfide.

Dimethyl disulfide (DMDS) is an alternative fumigant to methyl bromide that was phased out globally due to its stratospheric ozone-depleting properties. Covering the surface of the soil with a plastic tarpaulin or 'barrier film' when using a soil fumigant is typically used to retain fumigants in the soil and to reduce emissions. Emission levels depend on the film's permeability, which varies mainly according to the film's material, the type of fumigant and the environmental conditions. We used specialized laboratory equipment to test the permeability of four films to DMDS under similar temperature and relative humidity (RH) conditions present in the field: polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC) and ethylene vinyl alcohol copolymer (EVOH). This report presents evidence that the influence of temperature and relative humidity on the permeability of four films to the fumigant DMDS: PE,PVC,PVDC, EVOH. This research confirmed that PE and PVC films are relatively permeable to DMDS and PVC was more unstable to a range of environmental condition than other three films; PVDC and EVOH films are relatively impermeable to the fumigant DMDS and the permeability of PVDC was more stable to a range of environmental conditions than EVOH. The cumulative emissions of DMDS from soil covered with PE, PVC, PVDC or EVOH were 21.38%, 27.51%, 1.59% and 1.52%, respectively. As the permeability of PVDC was more stable to a range of environmental conditions than EVOH, PVDC shows potential for use in the field with a volatile fumigant such as DMDS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app