Add like
Add dislike
Add to saved papers

Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role.

The interaction of lead (Pb) with plant hormonal balance and oxidative stress remains under discussion. To evaluate how Pb induces oxidative stress, and modulates the antioxidant enzymes and the phytohormones pool, four-week old Pisum sativum plants were exposed during 28 days to 10, 100 and 500 mg kg-1 Pb in soil. In comparison to leaves, roots showed higher Pb accumulation, oxidative damages and changes in phytohormone pools. Contrarily to leaves, where glutathione reductase (GR) and ascorbate peroxidase (APX) activities were more stimulated than catalase (CAT) and superoxide dismutase (SOD), roots showed a stimulation of SOD, GR and APX in all doses, and of CAT in the highest dose. While protein oxidation occurred in roots even at lower Pb-doses, lipid peroxidation and membrane permeability also occurred but at 500 mg kg-1 and in both organs, accompanied by increases of H2 O2 . Jasmonic acid (JA) responded in both organs even at lowest Pb-doses, while salicylic acid (SA) and abscisic acid (ABA, only in leaves), increased particularly at the concentration of 500 mg Pb kg-1 . In conclusion, and compared with leaves, roots showed oxidative damage even at 10 mg Pb Kg-1 , being proteins a first oxidative-target, although there is a stimulation of the antioxidant enzymes. Also, JA is mobilized prior to oxidative stress changes are detected, and may play a protective role (activating antioxidant enzymes), while the mobilization of SA is particularly relevant in cells expressing oxidative damage. Other hormones, like indolacetic acid and ABA may have a low protective role against Pb toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app