Add like
Add dislike
Add to saved papers

Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola.

The tropical forage grass Brachiaria humidicola (Bh) controls soil microbial nitrification via biological nitrification inhibition (BNI). The aim of our study was to verify if nitrate reductase activity (NRA) in Bh roots or leaves reflects in vivo performance of BNI in soils. NRA was measured in roots and leaves of contrasting accessions and apomictic hybrids of Bh grown under controlled greenhouse and natural field conditions. Nitrate (NO3 - ) contents were measured in soil solution and in Bh stem sap to validate NRA data. Potential soil nitrification rates (NRs) and leaf δ15 N values were used to verify in vivo BNI by the NRA assay in the field study. NRA was detected in Bh leaves rather than roots, regardless of NO3 - availability. NRA correlated with NO3 - contents in soils and stem sap of contrasting Bh genotypes substantiating its reflectance of in vivo BNI performance. Additionally, leaf NRA data from the field study significantly correlated with simultaneously collected NRs and leaf δ15 N data. The leaf NRA assay facilitated a rapid screening of contrasting Bh genotypes for their differences in in vivo performance of BNI under field and greenhouse conditions, but inconsistency of the BNI potential by Bh germplasm was observed. Among Bh genotypes tested, leaf NRA was closely linked with nitrification activity, and consequently with actual BNI performance. It was concluded that NRA in leaves of Bh can serve as an indicator of in vivo BNI activity when complemented with established BNI methodologies (δ15 N, NRs) under greenhouse and field conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app