Add like
Add dislike
Add to saved papers

Seasonal mobility of antimony in sediment-water systems in algae- and macrophyte-dominated zones of Lake Taihu (China).

Chemosphere 2019 Februrary 6
Differences in trophic status can lead to different water quality and sediment geochemistry characteristics, influencing antimony (Sb) mobility in sediments and its release into the water column. In this study, seasonal sampling was conducted in algal- and macrophyte-dominated zones of Lake Taihu, China. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were used to measure soluble Sb and DGT-labile Sb in the sediment-water profiles at a 4 mm vertical resolution. Results showed that total Sb in sediments from the two zones were on average 3.50 mg/kg and 3.21 mg/kg in the algal- and macrophyte-dominated zones, respectively, with the residual fraction being 96.3% and 95.4% of the total Sb contents in the two zones. In winter, soluble Sb concentrations in both zones increased. This was probably due to the oxidation of Sb(III) to Sb(V) by Mn and Fe oxides. In summer and autumn, soluble Sb concentrations in the algal-dominated region remained low. This is attributed to the dominance of insoluble Sb(III) in sediments under anoxic conditions under eutrophic environments. In contrast, soluble Sb concentrations in the macrophyte-dominated zone were significantly high in summer and were 4.15-times higher than limits set by the World Health Organization (WHO). This likely resulted from the photochemical and rhizospheric oxidation of insoluble Sb(III) compounds. It is suggested that Sb contamination in the sediment-water system of the macrophyte-dominated zone deserves additional attention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app