Add like
Add dislike
Add to saved papers

Glyco-recoded Escherichia coli: Recombineering-based genome editing of native polysaccharide biosynthesis gene clusters.

Metabolic Engineering 2019 Februrary 15
Recombineering-based redesign of bacterial genomes by adding, removing or editing large segments of genomic DNA is emerging as a powerful technique for expanding the range of functions that an organism can perform. Here, we describe a glyco-recoding strategy whereby major non-essential polysaccharide gene clusters in K-12 Escherichia coli are replaced with orthogonal glycosylation components for both biosynthesis of heterologous glycan structures and site-specific glycan conjugation to target proteins. Specifically, the native enterobacterial common antigen (ECA) and O-polysaccharide (O-PS) antigen loci were systematically replaced with ∼9-10 kbp of synthetic DNA encoding Campylobacter jejuni enzymes required for asparagine-linked (N-linked) protein glycosylation. Compared to E. coli cells carrying the same glycosylation machinery on extrachromosomal plasmids, glyco-recoded strains attached glycans to acceptor protein targets with equal or greater efficiency while exhibiting markedly better growth phenotypes and higher glycoprotein titers. Overall, our results define a convenient and reliable framework for bacterial glycome editing that provides a more stable route for chemical diversification of proteins in vivo and effectively expands the bacterial glycoengineering toolkit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app