Add like
Add dislike
Add to saved papers

A novel reversed-phase and weak anion-exchange mixed-mode stationary phase based on horizontal polar-copolymerized approach for separation of small organic molecules and inorganic anions.

Talanta 2019 May 16
A novel silica-based reversed-phase/weak anion-exchange mixed-mode chromatography (MMC) stationary phase referred to as OTAS was synthesized based on the horizontal polar-copolymerized approach using trichlorooctadecylsilane (ODS) and (3-glycidyloxypropyl)trimethoxysilane (GPS) as ligands, and then followed by the reaction of epoxy group with diethylamine to introduce the tertiary ammonium functional group. The new stationary phase was characterized by instrumental analysis, and evaluated by separating the mixture of alkylbenzene homologues in reversed-phase mode and acidic organic compounds in ion-exchange chromatography mode, respectively. The results indicate that not only the baseline separation of 11 kinds of neutral and acidic organic compounds can be achieved successfully, but also 5 kinds of inorganic anions can be separated completely. The chromatographic property of OTAS column can be controlled by adjusting the molar ratio of ODS to GPS. Moreover, the OTAS column was used successfully to analyze the inorganic anions in the actual water samples. The good separation and selectivity of OTAS column suggests that the new MMC stationary phase can be used for the analysis of complex samples containing of neutral and acidic organic compounds or inorganic anions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app