Add like
Add dislike
Add to saved papers

The paramagnetic properties of malaria pigment, hemozoin, yield clues to a low-cost system for its trapping and determination.

Talanta 2019 May 16
The binding of malaria pigment, hemozoin, by a gradient magnetic field has been investigated in a manual trapping column system. Two types of magnetic filling have been tested to produce field gradients: nickel-plated steel wires, wrapped around a steel core, and superparamagnetic microbeads. The latter system allows an efficient trapping (> 80%) of β-hematin (a synthetic pigment with physical and paramagnetic properties analogous to those of hemozoin). Tests with a Plasmodium falciparum 3D7 culture indicate that hemozoin is similarly trapped. Off-line optical spectroscopy measurements present limited sensitivity as the hemozoin we detected from in vitro cultured parasites would correspond to only a theoretical 0.02% parasitemia (1000 parasites/µL). Further work needs to be undertaken to reduce this threshold to a practical detectability level. Based on these data, a magneto-chromatographic on-line system with reduced dead volumes is proposed as a possible low-cost instrument to be tested as a malaria diagnosis system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app